2016年底中国
风电装机容量快速增长达到169 GW。自2014年以来中国的弃风量飙升,2016年全国弃风量约达497亿 kW˙h,相当于南京市年耗电量。我国煤电结构和
风能的波动特性,使大规模风电并网发电日益困难。
分布式储能技术已成为改善可再生能源并网的关键技术。首先分析比较现有适用于改善风电并网的多种分布式储能技术;然后考虑利用我国大量热电联产机组,提出可降低风电并网调峰容量的风电并网控制策略。控制中心通过降低热电联产机组发热功率和控制分布式储能系统负荷功率获得额外可调度的发电容量;用户相应地使用电热泵来补偿供暖以弥补热电联产减少的发热量。仿真结果表明,该控制策略可使峰谷差等效减小,从而减轻大规模风电并网的调峰压力。
引言
2016年,全国风电发电量2 410亿 kW˙h,占全部发电量的4%,全年弃风电量497亿 kW˙h。目前全国弃风较为严重的地区是甘肃(弃风率为43%)、新疆(弃风率为38%)、吉林(弃风率为30%)、内蒙古(弃风率为21%)[1]。由于风能的随机性和不稳定性,风电场每天最大和最少发电量可能相差40~50倍,一天内的输出功率变化处于非常不稳定状态[2]。同时风电具有反调峰特性,夜间用电负荷处于低谷时段但风力发电出力往往较大。风电的波动性和反调峰特性导致风电并网时需要有合理的电源进行调峰,以平衡负荷;而我国“三北”地区拥有大量按以热定电方式运行的热电联产机组,以煤电为主的这一电源结构决定了其难以满足风电并网的深度调峰需求,顾经常出现限电弃风现象[3,4]。
为改善风电并网现象,本文提出一种基于能源需求响应和分布式储能的风电并网控制方法。通过改变热电联产机组以热定电的运行方式,降低热电联产机组发热功率来获得额外可调度的发电容量;同时,在用户侧引入分布式储能技术和电热泵来合理调整用户的能源需求响应,补偿热电联产减少的发热量,等效减小负荷峰谷差,从而降低风电并网调峰容量[5,6,7,8,9]。
1.分布式储能技术比较
目前储能技术主要包括电化学储能、物理储能、电磁储能等。本文从技术特点、应用成熟度、投资成本3方面对主要类型的小容量储能技术进行多维度的比较和分析,提出适用于改善风电并网的分布式储能技术。
1.1技术特点
从功率等级和放电响应时间2个维度对现有储能技术进行比较,从而得到适用于分布式储能应用的储能技术,如图1所示。
图1 各类储能技术的功率等级与放电时间
从图1中可看出:铅酸电池、锂离子电池、钒流电池、飞轮储能具有放电响应时间快速的特点,特别适用于1~10 kW的小型分布式储能系统;抽水蓄能、压缩空气等储能技术适用于大规模储能系统;超导储能、超级电容具有接近毫秒级的响应时间,适用于改善电能质量的场合。
1.2技术成熟度
目前主要几类储能技术的成熟度可划分为成熟应用、产业化初期和初始研究3个阶段,如图2所示。
图2 储能技术成熟度示意图
铅酸电池是化学电池领域最成熟的技术,抽水蓄能是物理储能中最成熟的技术。锂离子电池、飞轮储能、钠硫电池也是较成熟的技术,商业化可行;但仍处于产业化初期阶段,离大规模成熟应用还有一定距离。
1.3投资成本
投资成本是储能技术推广应用的重要因素。表1列出了主要类型的分布式储能技术的单位功率成本和单位容量成本,其中已经考虑了储能技术的能量转化效率[10]。
表1 各类储能技术的特性比较
铅酸电池的成本较低,技术成熟,但受限于循环寿命;锂离子电池的性能优于铅酸电池,但价格较高;飞轮储能的功率密度高,单位功率成本较低,单位容量成本非常昂贵,适合高功率、短时间的应用场合。
2.基于能源需求响应和分布式储能的风电并网控制方法
2.1控制方法
我国北方地区存在大量的热电联产机组,为解决热电联产机组与风电并网机组共存的矛盾,本文提出基于能源需求响应和分布式储能的风电并网控制方法。通过控制用户侧的能源需求响应和分布式储能装置的充放电功率,实现改善风电并网容量的目的[11,12,13]。
在负荷高峰期,首先将热电联产机组作为“源控点”以减少供暖出力,从而获得其发电出力增量;同时控制用户侧的分布式储能系统向电网供电,等效地削减高峰负荷。然后根据供暖出力的减少量和用户侧的空间采暖能源需求,用户侧的分布式热泵响应工作,补偿机组供热出力减小量,起到填补低谷负荷的作用。
而在负荷低谷期,同样将减少热电联产机组的供暖出力以降低发电出力,从而减少此时风电并网的调峰压力;同时控制用户侧的分布式储能系统充电,等效地填补负低谷负荷。然后靠近机组的用户侧分布式热泵响应工作,填补低谷负荷。
3.仿真结果
本文利用甘肃省某日的风电出力曲线进行模拟仿真,仿真计算的总运行时间为24 h,单位调度时间Δt为15 min。城市供暖热水流速为2.5 m/s;考虑到供暖效率,电厂的供暖范围在9 km左右;每个用户组之间的传输管道距离为2.25 km。分布式热泵的性能系数是3。每个用户组分布式储能系统的总容量为200 MW。用户集中供暖由25台热电联产机组C135/N150-13.24负责,用户供暖负荷是4 425 MW。
图3为调整后的负荷曲线,负荷的峰谷差从5 181 MW降至1 291 MW,调整后的负荷曲线变得相对平缓。
图3 调度前后的负荷曲线
图4为热电联产机组调度前后的出力情况。当负荷低谷时,机组减少供暖出力,减少发电出力;当负荷高峰时,机组减少供暖出力,增大发电出力,等效削减负荷。
图4 调整前后的热电联产机组出力
图5为用户供暖负荷的空间分布及各终端用户组处分布式热泵的使用情况,即电力热泵供暖负荷的时间空间分布。
图5 用户组分布式热泵供暖负荷分布
4.结论
本文提出了一种基于能源需求响应和分布式储能的风电并网控制方法。本方法并不直接控制风电并网功率,而是协调优化控制热电联产机组出力、用户侧供暖需求响应和分布式储能充放电功率,减少负荷峰谷差,缓解风电并网的系统调峰压力。本方法利用了北方地区现存的大量采暖负荷及供热系统,改善了风电大量弃风的现象;因为不需要新建纯凝汽火电机组,减小了电源投资,可以把有限的资金更好地利用于电网建设上。