当前位置: 风电网 » 风电技术 » 风电技术 » 正文

基于小波包分解的混合储能技术在平抑风电场功率波动中的应用

日期:2016-05-13    来源:中国新能源网  作者:韩晓娟 陈跃燕 张浩 陈芳

国际风力发电网

2016
05/13
10:58
文章二维码

手机扫码看新闻

关键词: 风电技术 风电场功率波动 混合储能

摘要:在充分分析风电功率幅频特性的基础上,提出基于小波包分解的混合储能技术平抑风电场输出功率波动的方法。采用小波包分解理论对风电场输出功率信号进行多尺度分解,得到反映并网功率信号的低频信号和接入储能系统的高频信号;根据不同类型储能系统的特点,将高频信号再次进行划分,分别选择与其频率范围适应的电池和超级电容器储能设备,建立了基于混合储能系统的风电场输出功率平滑控制模型;与单类型电池储能系统功率平滑效果进行了对比。仿真实例表明:该方法能够有效地抑制风电场输出功率的波动,提高储能电池的使用寿命,具有一定的工程应用价值。

引言

由于气候与地理环境等因素的影响,风能具有出力间歇性与随机性[1]的特点,风电场输出功率直接并入电网将对电力系统的稳定性、电网频率、电能质量、发电计划和调度等方面产生较大的影响[2-5],从而严重制约了风能的利用及风电的大规模发展。因此,如何有效平抑风电场输出功率波动问题具有重要的现实意义。

针对这一问题,国内外学者做出了积极的研究,主要集中在两种方式。第1种是通过调节桨距角[6]和改变发电机转速[7]来调整风机输出功率以实现单台风力发电机组输出功率平滑的目的,然而风电场各机组之间的输出功率有可能互补,同时也有可能相互叠加,从而导致风电场总的输出功率存在较大波动,在一定程度上降低了风能的有效利用率[8]。另一种则是考虑风电场的整体输出功率,在风电场出口并网母线位置配备储能系统[9-10],利用储能系统的吞吐能力起到平抑风电功率波动的作用,即当风电出力骤升时,储能装置吸收功率,反之则输出功率。

储能系统多种多样,各自具有不同的特点,而且在功率平滑方面也得到了不同程度的应用。文献[11]提出基于低通滤波原理平抑风电功率中指定频率分量为目标,研究了储能系统用于平抑风电功率波动控制的有效性,但该方法缺少对储能系统的约束条件,尤其是低通滤波器的时间常数选择将直接影响风电功率的平滑效果及储能容量的配置。文献[12]提出了基于风电场功率短期预测技术的全钒电池储能系统运行控制策略以平抑风电场输出功率的波动,但该方法增加了电池的循环次数,不利于电池的使用寿命。文献[13]在计及电池寿命的基础上,采用基于电池荷电状态的可变滤波时间常数的储能控制方法,但该方法没有考虑当前风电功率波动的强弱作为滤波时间常数的约束条件之一,间接地影响了电池的充放电次数。文献[14-16]利用蓄电池和超级电容器混合储能系统平抑风电场输出功率的波动,按照相应准则实现电池和超级电容器之间的功率分配,在有效抑制风电场输出功率波动的同时延长电池的使用寿命。

综上所述,将不同类型储能系统进行组合以达到优势结合、缺陷互补的混合储能系统能够更加有效地平抑风电场输出功率的波动。本文在分析风电场输出功率幅频特性的基础上,提出一种基于小波包分解理论的混合储能系统平抑风电场输出功率波动的方法。首先对风电场输出功率信号进行多尺度小波包分解,得到反映并网功率信号的低频信号和接入储能系统的高频信号;然后选择蓄电池和超级电容器作为储能设备,根据其各自的不同特点[17],将高频信号再次进行划分,分别选择与其频率范围适应的储能方式以组成混合储能系统进行风电场输出功率的平滑。最后,通过现场采集到的风电功率数据验证了该方法的有效性,为储能电池和超级电容器两种储能介质间能量分配提供了一定的理论依据。

1基于小波包分解理论的混合储能功率平滑方法

1.1风电功率信号的频谱分析

采用某99MW风电场2010年全年实际输出功率数据,采样时间为1min,直接调用Matlab工具箱中的FFT函数对该数据进行快速傅里叶变换得到幅频特性曲线,如图1所示。

由图1可知,风电场输出功率的能量主要集中在低频部分(0~10−4Hz),其高频部分能量较低。这与风速特性相吻合,高频变化的风速幅值很小,而低频变化风速幅值较大,因此将低频功率信号作为风电并网的期望功率值,高频功率信号则由储能系统进行平滑,即可在满足并网功率平滑的同时,又兼顾对储能系统性能的影响。因此,本文采用小波包分解方法将风电场输出功率信号分解成高频信号和低频信号。

1.2风电功率信号的小波包分解

小波分析非常适用于对非平稳突变信号的处理,而对于渐变信号,小波包具有更广泛的应用价值。小波包分解是在小波变换的基础上产生并发展起来的。对比来说,小波包分解是一种更精细的分解方法,它不仅对信号的低频部分进行分解,还对高频部分也进行了分解,有助于了解到信号更加细节处的特征,从而提高了时频分辨率。三层小波包分解的示意图如图2所示,图中S是原始风电功率信号。

由图3可知,低频部分为原始功率曲线的主导部分,其幅值与原始功率信号相近,可以对原始功率信号的概貌进行描述,高频部分则能量较小,且在零值附近上下波动,幅值明显小于低频部分,因此,将低频信号作为并网功率参考值,采用小波包分解滤波方式得到风电功率平滑曲线如图4所示。

由图4可知,经小波包分解滤波后得到的风电功率曲线波动大幅降低,可以快速地跟踪储能系统的输入目标值,获得更平滑的输出功率,不存在滞后现象。由于经小波包分解后接入储能系统的信号仅为高频信号,其幅值小且在零值附近上下波动。但是由图3中次高频和最高频部分可知,虽然其都是围绕零值上下波动的随机信号,但是其幅值大小具有明显差别,数量级差别达到103。根据高频信号的这一特点及蓄电池的响应速度可知:如果采用单一的蓄电池储能方式吸收其高频部分,不仅无法实现小波包分解功率平衡的需求,而且频繁的充放电动作将会对储能电池的寿命造成很大的影响。因而,对高频信号中次高频及最高频部分分别选用不同的储能方式来平抑风电场输出功率的波动。

1.3基于混合储能技术的风电场输出功率平滑控制

风电场输出功率信号通过小波包分解得到的低频信号由于其能量高变化慢起主导作用,将之作为期望的并网功率值,而高频信号能量低变化快,则由储能系统进行吸收以达到平滑功率输出的目的。考虑到储能电池具有能量密度高和功率密度、循环使用寿命低等特点,将次高频信号由电池储能系统进行平滑;而超级电容器具有功率密度高、循环寿命高和能量密度低等特点,将未被电池储能系统平滑掉的功率信号及其它高频信号送往超级电容器进行快速滤波处理。根据这一思想,按照文献[19]选择电池响应时间为1h,其响应频率为2.78×10−4Hz,与经小波包分解后得到的S8,1—S8,4次高频信号响应频率几乎一致,因此选择电池储能系统吸收该段频率信号;剩余的高频信号S8,5—S8,255及未被电池吸收部分均由超级电容器吸收,实现风电功率平滑的目的,其功率平滑控制框图如图5所示。

由图5可知,当风电场实际有功功率G(s)大于小波包分解给出的预期功率X(s)时,对电池储能系统和超级电容器发送充电指令;当风电场实际有功功率G(s)小于小波包分解给出的预期功率X(s)时,对电池储能系统和超级电容器发送放电指令。

在充放电过程中,由于电池惯性大并且响应速度慢,电池的实际输出H0(s)并不完全等于目标值Y0(s),电池储能系统只对次高频部分进行了吸收,而剩余的最高频部分及未由电池储能系统吸收的部分则由超级电容器完成吸收。当电池输出与超级电容器输出H0(s)+H1(s)=Y0(s)时,实际的并网功率C(s)等于预期的并网功率X(s),功率平滑过程结束。

 «上一页   1   2   下一页»   共2条/2页 
返回 国际风力发电网 首页

风电资讯一手掌握,关注 风电头条 储能头条 微信公众号

看资讯 / 读政策 / 找项目 / 推品牌 / 卖产品 / 招投标 / 招代理 / 发新闻

风电头条

储能头条

国际能源网站群

国际能源网 国际新能源网 国际太阳能光伏网 国际电力网 国际风电网 国际储能网 国际氢能网 国际充换电网 国际节能环保网 国际煤炭网 国际石油网 国际燃气网