与陆上相比,海上平均风速较高,湍流水平低,风剪切较小,且风电机组的设计不受噪音限制。因此,海上风电机组有其设计特点,如风轮直径更大、额定风速更低、轮毂高度相对降低、转速则更高,甚至有两叶片、单叶片的设计概念出现。对于海上风电场而言,由于海上较低的湍流水平,风电机组之间的尾流干扰也与陆上的情况不同,其尾流模型的建立和风电机组排布优化显得更加重要。
防腐蚀设计是海上风电机组设计的重要方面。海上的高盐雾、高湿度环境使含盐雾的水汽很容易通过机舱缝隙进入机舱内部,对风电机组的零部件造成腐蚀。海上风电机组的主要防腐蚀方法有防腐涂装、密封和使用耐腐蚀材料等。
由于海上风电机组的维修和维护远比陆上风电机组困难,必须进行有针对性的可靠性和可维护性设计。可靠性设计技术包括机械系统裕度设计、电气系统冗余设计、电气原件降额设计、发电机冷却方式设计、变流器可靠性增强设计、状态监测与故障诊断技术等;可维护性设计技术包括满足可维护性设计准则的结构设计和大部件维护专用设备研制等。
此外,台风对我国东南沿海的影响频繁且广泛,其对海上风电场的破坏力很大,可能造成叶片断裂、塔筒折断、机舱罩倾覆等重大损失。为了抵御台风的破坏,对台风路径海域的海上风电机组还必须进行增强设计,并且优化台风期间的控制策略。